Direkt zum Inhalt springen

Closed Projects


Printed electronics is predicted to be a $300billion market within two decades. Printing is a versatile enabling technology for electronic products that cannot be made with Si microelectronics technology. Single-crystal Si microelectronics must be constructed on rigid Si wafer and are restricted to small areas. Polycrystalline and amorphous Si (poly-Si and a-Si) can make large-area products but have low carrier mobility and are typically restricted to a rigid substrate. Further, the multiple lithographic steps and high-vacuum processes in a clean room environment make the cost of (single-crystal, poly- and a-) Si microelectronics products relatively high. Printing of semiconductor and metals, on the other hand, permits creation of large area electronics on flexible substrates, and enables high volume scale economies. The applications of printed electronics are diverse and pervasive, including electronics products (e.g. large active display pixel drivers and solar panels), conformal electronics for implantable medical sensors, wearable or textile electronics, biosensors, single-use electronics, low-cost sensors, and Radio Frequency Identification tags. Printed electronics will also lead to completely new products such as sophisticated diagnostic tools and smart packaging and inventory labels. It is believed that printed electronics will revolutionize our lifestyle within the next two decades just as Si microelectronics has done in past decades.

The largest segment of the total printed electronics industry will be printed transistors and memory. Organic semiconducting molecules are the dominant semiconductor materials used for printed thin-film transistors (TFTs). However, organic materials (such as polythiophene and pentacene) typically have low mobilities, so that the use of TFTs is restricted to applications involving only low-frequency and light-duty computation, control and communication. Further, organic transistors generally have low long-term stability. In recent years, various one-dimensional nanowires with much higher carrier mobilities and stabilities have emerged as alternative candidates for printable transistors. Single walled carbon nanotubes (SWNTs), which can be thought of as rolled-up cylinders of graphite monolayer with ~1 nm diameter and tens of nanometers to several centimeters length, are widely regarded to be an excellent candidate due to their unique properties. Due to their nearly one-dimensional and defect-free electronic structure, electronic transport in SWNTs is ballistic, allowing them to carry high current with essentially no heating. SWNTs have excellent thermal, mechanical and chemical stability, bendability and unique optical properties. Also of great importance, the “organic” SWNTs can be easily printed as their density is close to those of water and organic solvents and are easily functionalized, making low-cost roll-to-roll manufacturing possible. Hence, SWNTs are believed to be an ideal semiconducting material candidate for printed- electronics. Using SWNTs as transistor building blocks, a new-generation of much-higher performance printed plastic electronics shall be realizable.

The overall objective of this proposed research programme is to develop aligned SWNTnet-based field-effect transistors with high mobility, on/off ratio and yield and demonstrate their use in high-performance logic circuits and a prototype device. The project, approved in Singapore in the frame of the „Competitive Research Program“, is a collaborative effort lead by Nanyang Technological University of Singapore together with TUM, University of Illinois (Urbana-Champaign), MIT, Dayton University and one industry partner, ST Microelectronics. TUM will be involved together with NTU and STMicroelectronics in the final realization of a prototype device. The TUM Fellowships are sponsored by the TUM Institute of Advanced Studies. 


IGSSE setup of interdisciplinary research in project teams

Apply now: 12th call for proposals

IGSSE supports up to 10 new project teams

Call closes 2 July 2017


Apply now: IGSSE travel grant for ICCE 2017

28-29 September 2017, TU Darmstadt

Submission deadline for abstracts: 18 June 2017


IGSSE Forum 2017

29-31 May 2017, TUM Science and Study Center Raitenhaslach, Burghausen


Climate-KIC: Join the PhD Catapult

Two-week thematic summer schools across Europe


IAS Symposium: Selected topics in science and technology

8-10 May 2017, IAS Building, Garching Campus


IAS Coffee Talk with PTL Florian Praetorius

3 May 2017, 1 pm, TUM IAS Building, Garching Campus


10th IGSSE Forum

1 - 4 June 2016, TUM Science and Study Center, Burghausen


10th IGSSE Forum

Smart cooperation - science and technology in, with and for society


The Science of Cooking

Doctoral Candidates explore the Secrets of a great Dinner



Having heard of a great Canadian Kick-Off Meeting, everyone at IGSSE was thrilled to welcome the...


Breakfast at IGSSE´s

Meet the IGSSE team every other month! All the things IGSSE members wanted to asked but never dared...


Save the Date: Canadian ATUMS Speaker on "Global Science- Global Career"

26. November 2015, 6-8 pm, IAS Faculty Club, Garching Campus

20 < lib.tabbedcontent
June - 2017
Sun Mon Tue Wed Thu Fri Sat
  01 02 03
04 05 06 07 08
11 12 13 14 15 16 17
18 19 20 21 22 23 24
26 27 28 29 30  
Friday, 09. June 2017
Workshop: Standing up for science
9 June 2017, 9am-4pm, Brussels
Apply now: McKinsey 'Forschergeist' symposium
9-11 June 2017, Berlin For doctoral researchers and postdocs!